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A new, conceptually simple model of crystal packing is
proposed which uses “packing patterns” to describe unit
cells in terms of molecular building blocks.

The question of why molecules pack to form particular crystal
structures is an area of great scientific interest. The correct
prediction of a crystal structure given only a molecular building
block‡ is not achieved routinely or with any high degree of
success.1,2 In general hundreds of equi-energetic, densely-
packed structures are generated and the problem is selecting the
“right” one. Here we present a model that offers a new
description of crystal structures and which it is hoped will
contribute positively to the field of crystal structure prediction.
The model allows estimation of unit cell size from molecular
dimensions and thus during crystal structure prediction trials,
the 3-dimensional search space is dramatically reduced. In
addition, unit cell surface area is introduced as a parameter with
predictive properties.

The following describes the stacking of a discrete number of
boxes and the resulting dimensions of the rectangular container
that encloses them. The identical boxes, with three unequal
sides, l > m > s, are stacked with faces touching and edges
aligned and hence are described as close-packed. There are six
ways to close-pack four boxes and these are shown in Fig. 1. It
can be seen that there are only two categories of packing pattern,
namely 221 and 114 (where the integers correspond to the box-
dimension multipliers henceforth pattern coefficients). The
three permutations of the 221 pattern give pattern types 221(l),
221(m) and 221(s): note that the box dimension given in the
pattern name corresponds to the dimension that is multiplied by
the unique pattern coefficient. Similarly the three permutations
of the 114 pattern give the 114(l), 114(m) and 114(s) pattern
types (Fig. 1, bottom). A consequence of using a box with 3
unequal dimensions in the model (as opposed to a cube or a
sphere) is that the resultant packing patterns can be distin-
guished in terms of surface area of the container. For example,
it can be seen from Fig. 1 that the pattern 221(l) yields container
dimensions that are most similar and for which the surface area
of the container is minimised. The container with the largest
surface area belonging to the 221 pattern category is that of
221(s). In the case of the 114 packing patterns it is clear that
114(s) gives a container with the smallest surface area and
114(l) has the largest surface area. The volume of the container
is constant for all packing patterns.

Similar arguments can be applied to the stacking of 2 or 8
boxes in a close-packed manner. One pattern category exists for
the packing of 2 boxes, namely 112 and the three pattern types
112(l), 112(m) and 112(s) give containers with different surface
areas, 221(s) yielding a container with the smallest surface area.
Three packing categories exist for stacking 8 boxes: 222, 421
and 118.

The top 5 space groups in the Cambridge Structural Database
(CSD)3,4 in terms of frequency of occurrence are P21/c (35.5%),

P1̄ (21.6%), P212121 (8.6%) C2/c (7.7%), and P21 (5.6%).
Allowing a maximum of one molecule per asymmetric unit (ZA
5 1), the possible number of molecules per unit cell, Z, of these
five space groups is 1, 2, 4 or 8. By reducing the description of
a molecule to 3 dimensions (cf. a box) and likening the unit cell
to the container, the relationships between molecular dimen-
sions lm, mm, sm and unit cell dimensions in P21/c, P1̄, P21,
P212121 and C2/c have been examined.

The CSD (Nov 2002) was searched for crystal structures that
belonged to a particular space group (no alternative settings
were allowed), which contained a total of Z = 2, 4 or 8
molecules in the unit cell (depending on the space group) and
which contained only molecules of a single chemical type. The
hits from the search were then processed using RPLUTO5 to
determine the molecular dimensions in terms of the principal
axes of inertia. The difference between the maximum and
minimum atomic coordinates (including the van der Waals
radii) on each of the three perpendicular axes was taken as a
molecular dimension. The three dimensions were sorted in
descending order, thus lm > mm > sm. All permutations of the
cell axes (Dcell) with molecular axes (Dmol) were taken to give
the calculated pattern coefficients, cl,m,s (1).

cl,m,s = Dcell/Dmol (1)

† Electronic supplementary information (ESI) available: equation used to
calculate goodness of fit, mean goodness of fit values calculated for Z = 4
datasets, results of pattern assignment for Z = 2 and Z = 8 structures,
examples of unit cell dimension calculations. See http://www.rsc.org/
suppdata/cc/b3/b310873b/

Fig. 1 Illustration of the model used to describe crystal packing. Top: four
boxes, each with dimensions l > m > s are stacked in 3 ways that are
categorised as 221 patterns. Bottom: The three ways of stacking of 4
identical boxes with dimensions l > m > s in the 114 pattern category.
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For each permutation, a goodness of fit to the “target” pattern
coefficients was determined, using the Euclidean distance
metric (see ESI). Initially integer target pattern coefficients
(from the box model) were used but a better agreement with
experimental data was found when pattern coefficients derived
from the ideal close-packing of spheres were used. In crystal
structures as in close-packed spheres, there is an inter-
penetration of the layers of molecules not accounted for in the
box model. Thus pattern coefficient 1 in the box model equates
to 0.82, (the separation of two layers of close-packed spheres6),
2 equates to 1.64 etc. In the case of 4 molecules in a unit cell a
goodness of fit was calculated for patterns 221 and 114 (GoF221
and GoF114). GoF221 and GoF114 were compared and the lower
value was used to assign the structure to the corresponding
pattern, the results are presented in Tables 1 and 2. Results for
structures with Z = 2 and 8 are given in the Supplementary
Information. The mean GoF for each pattern type was found to
be in the range 10–15, where 0 represents a perfect match
between the target and calculated pattern coefficients and 100
indicates the difference between the target and calculated
pattern coefficients is equal to the target pattern coefficients.§
Thus the experimental data are in good agreement with the
proposed model: packing patterns are applicable to crystal
structures and unit cell dimensions are related to molecular
dimensions. For example 42% of structures in P212121 belong to
pattern type 221(lm) and therefore cell axis a ≈ 0.82lm, b
≈ 1.64mm and c ≈ 1.64sm. Examples of structures assigned to
packing patterns 221(lm) and 114(sm) are shown in Fig. 2.

By comparing the number of observations in the two tables it
can be seen that the 221 pattern category describes 20708/26091
or 79% of the unit cells with Z = 4 in these three space groups.
The pattern category 114 is assigned to structures in 21% of
cases. Closer inspection of the populations in the 221 pattern
category shows that a large proportion (13784/20708, 67%) of
unit cells fall within the 221(lm) pattern type. A similarly
uneven distribution in the population of patterns is found in the
114 pattern category, where the pattern type 114(sm) accounts
for 81% of structures. Thus the most populated packing patterns
are those identified by the box model as having the minimum
surface area for a given volume. Packing patterns that generate
containers with larger surface areas, such as 221(sm) and
114(lm) are observed in a minority of structures.

Preliminary results have shown that by applying the packing
patterns described above and using calculated packing coeffi-
cients it is possible to estimate the lengths of unit cell axes

(examples are included in ESI). This is an important result to
those interested in the field of crystal structure prediction.
Instead of searching a unit cell of 30 3 30 3 30 Å, (volume of
27000 Å3; a typical unit cell volume is ~ 2500 Å3) realistic
lengths for unit cell axes can be estimated. The search space is
dramatically reduced and thus the likelihood of finding the
correct structure is significantly increased.

In summary, a novel conceptually simple model of crystal
packing has been presented. The model is space group
independent and reinforces the principle of closest-packing.9 It
has been shown that the model is a viable representation of
experimental crystal structures. The observed preference for the
“most cubic” cell has implications for a number of areas
including crystal structure prediction. A preliminary examina-
tion of polymorphic structures indicates that packing pattern
and cell surface area considerations may prove illuminating.
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Table 1 Distribution of unit cells over 221 packing patterns for Z = 4
structures

Number of structures assigned to pattern

Space group Total obs. 221(lm) 221(mm) 221(sm)

P21/c 13516 7809 2388 842
P212121 8494 3612 1781 655
C2/c 4081 2363 715 543

Table 2 Distribution of unit cells over 114 packing patterns for Z = 4
structures

Number of structures assigned to pattern

Space group Total obs. 114(lm) 114(mm) 114(sm)

P21/c 13516 28 301 2148
P212121 8494 52 596 1798
C2/c 4081 0 58 402

Fig. 2 Crystal structures assigned to pattern types 221(lm) (top, CSD
Refcode ABIVIQ7) and 114(sm) (bottom, CSD Refcode, CAVQOF8). The
views illustrate the correlations between molecular dimensions and cell axis
lengths: with molecular dimensions l > m > s, in the 221(lm) structure
(top), approximately, a ≈ 2m, b ≈ 2s and c ≈ l. Likewise for the 114(sm)
structure (bottom), approximately, a ≈ l, b ≈ m and c ≈ 4s. For clarity,
only one molecule of the unit cell is retained in the structures on the
right.
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